Generative Adversarial Networks for Realistic Synthesis of Hyperspectral Samples

Abstract : This work addresses the scarcity of annotated hyperspectral data required to train deep neural networks. Especially, we investigate generative adversarial networks and their application to the synthesis of consistent labeled spectra. By training such networks on public datasets, we show that these models are not only able to capture the underlying distribution, but also to generate genuine-looking and physically plausible spectra. Moreover, we experimentally validate that the synthetic samples can be used as an effective data augmentation strategy. We validate our approach on several public hyper-spectral datasets using a variety of deep classifiers.
Type de document :
Communication dans un congrès
International Geoscience and Remote Sensing Symposium (IGARSS 2018), Jul 2018, Valencia, Spain
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01809872
Contributeur : Nicolas Audebert <>
Soumis le : jeudi 7 juin 2018 - 11:21:56
Dernière modification le : mercredi 18 juillet 2018 - 16:17:44
Document(s) archivé(s) le : samedi 8 septembre 2018 - 13:23:04

Fichiers

Template.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01809872, version 1
  • ARXIV : 1806.02583

Citation

Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre. Generative Adversarial Networks for Realistic Synthesis of Hyperspectral Samples. International Geoscience and Remote Sensing Symposium (IGARSS 2018), Jul 2018, Valencia, Spain. 〈hal-01809872〉

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

105