Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model

Abstract

Let M be a σ-compact C^∞ manifold of dimension n ≥ 2 and consider a single-input control system: ẋ(t) = X (x(t)) + u(t) Y (x(t)), where X , Y are C^∞ vector fields on M. We prove that there exist an open set of pairs (X , Y ) for the C^∞ –Whitney topology such that they admit singular abnormal rays so that the spectrum of the projective singular Hamiltonian dynamics is feedback invariant. It is applied to controlled Lotka–Volterra dynamics where such rays are related to shifted equilibria of the free dynamics.
Fichier principal
Vignette du fichier
feedback_equi_generecity.pdf (368.58 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03917363 , version 1 (01-01-2023)

Identifiers

  • HAL Id : hal-03917363 , version 1

Cite

Bernard Bonnard, Jérémy Rouot. Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model. 2023. ⟨hal-03917363⟩
41 View
28 Download

Share

Gmail Facebook Twitter LinkedIn More